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Abstract. This study is concerned with the stability of a two-dimensional incompressible conducting liquid film
surrounded by a passive conducting medium, when an electric field is applied in a direction parallel to the initially
flat bounding fluid interfaces. Currents generate charges at the bounding interfaces which in turn affect the stress
balances there. In the absence of an electric field, the viscous liquid film is stable (instability can be induced by
the inclusion of van der Waals forces for ultra thin films). A complete model is presented, at arbitrary Reynolds
number, which accounts for conductivity and permittivity contrasts between the fluid and surrounding medium,
as well as surface tension. The linear stability of the system is considered for arbitrary Reynolds numbers and it
is shown that the stable film can become unstable if, (i) σRεp >1, or (ii) σRεp <1 and (σR −1)(1−εp)<0, where
σR is the ratio of outer to inner conductivity and εp is the ratio of inner to outer permittivity. Instability is pos-
sible only if the electric field is non-zero and the scalings near bifurcation points that can be used to construct
nonlinear theories are calculated. Several asymptotic limits are also considered including zero Reynolds numbers
and short or long waves. The instability criteria given above are constructed explicitly in the case of Stokes flow.
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1. Introduction

Thin liquid films are important in a variety of applications from biophysics and engineering.
Instability and rupture of such films and the control of such events is of theoretical and tech-
nological interest. Instability and rupture of liquid films can be found in colloid and bicolloid
systems and particular applications involve the rupture of soap films, coalescence of emul-
sions, fusion of lipid bilayers or biological membranes, to mention a few (see for example
[1,2] and references therein). Liquid-film flows can also be found in heat and mass transfer
processes in different engineering applications.

The stability of liquid films in the absence of electric fields has been studied by many
authors, both theoretically using linear theories [3–6], and experimentally (for example [6]).
In the absence of viscosity and gravity, exact capillary traveling waves have been found by
Kinnersley [7] and additional ones by Crowdy [8]. The Kinnersley solutions were extended
by Papageorgiou and Vanden-Broeck [9,10] who included a parallel electric field in the sys-
tem and a dielectric fluid, and constructed, numerically, symmetric and antisymmetric trav-
eling waves of arbitrary amplitude and wavelength. The study in [9] also derives nonlinear
long-wave equations using a method different to, but with the same results, as Tilley et al.
[11]. The latter study also considers the dynamics and rupture (including finite-time singular-
ity and self-similar structures) of the electrified film and concludes that the electric delays the
rupture time.

When viscosity is present, thin liquid films are linearly stable and can evolve nonlinearly
to rupture if van der Waals attractive forces are included in the model, for example, as in
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[1,2,12,13]. The evolution equations derived in [12] and related problems are considered in
[14–17], who study in particular the types of singularities formed near rupture. In the pres-
ence of electric fields, we have additional physical effects such as body forces due to currents
in conducting fluids, and Maxwell stresses at free interfaces. The inclusion of a parallel elec-
tric field on a dielectric fluid has a stabilizing effect; this is shown in [18] who derive nonlin-
ear evolution equations that generalize those of [12]. It is also established that the instability
introduced by van der Waals forces can be completely suppressed by a strong enough electric
field. Numerical calculations based on the model equations show that the electric field can be
used to delay the rupture time or even completely stabilize the flow.

Melcher [19, Chapters 1–2] examined the effect of an electric field on the linear stabil-
ity of a sharp interface separating two non-conducting dielectric fluids of infinite extent, and
finds that the electric field is stabilizing and increases the speed of propagation of surface
waves. This behavior continues into the fully nonlinear regime as discovered by the compu-
tations of [9,10]. The linear stability of the interface separating two viscous conducting flu-
ids of infinite extent in the presence of an electric field applied parallel to the interface, has
been considered in [20]. Various limits are studied and it is established that charge relaxation
can induce an instability. Relevant reviews can be found in [21,22]. Also of relevance are the
studies of Mestel [23,24] who considers the stability of charged cylindrical jets – in the cylin-
drical geometry surface tension destabilizes short waves and so plays a different role than it
does here. In a more recent experimental and theoretical study, Burcham and Saville [25,26]
consider the stability of liquid bridges of a conducting liquid surrounded by a second con-
ducting medium. They show how an electric field can be used to alter the capillary instabil-
ity of liquid bridges, and make comparisons between theory and experiment. In particular,
they indicate how longer stable bridges can be formed in the presence of electric fields. Our
study is concerned with the two-dimensional problem where capillary instability is absent and
in fact surface tension has a regularizing effect. Thus, we wish to isolate possible interfacial
charge related instabilities from the problem and at the same time retain a jet geometry with
interfaces bounding a fluid region.

The present study considers the stability of an electrified viscous film under general condi-
tions. The film liquid and surrounding medium are conducting and charges are supported on
the interface. The surrounding region is taken to be hydrodynamically passive. Using linear
theory, we derive instability criteria when charges are present for arbitrary Reynolds numbers
and instability wavelengths. This study forms the basis of a nonlinear theory as in [18], for
example, as well as full computations of symmetric and antisymmetric solutions. The paper
is organized as follows: Section 2 contains the model and boundary conditions in the most
general case. Section 3 formulates the linear stability problem and derives the general disper-
sion relation which is solved numerically to determine the stability. Several asymptotic limits
are also considered and compared with the calculations. The case of zero Reynolds numbers
is considered in Section 4 and Section 5 contains our conclusions.

2. Governing equations

Consider a layer of viscous conducting fluid of undisturbed thickness 2d. The fluid viscosity is
µ, its density ρ, its electrical conductivity σ0 and its permittivity ε0εp, where ε0 is the permit-
tivity of the surrounding medium. The surrounding region outside the fluid layer is hydrody-
namically passive and has conductivity σ0σR. The undisturbed layer is symmetric about y=0
and an electric field acts in the x direction, where a Cartesian coordinate system is adopted
and the flow is assumed to be two-dimensional. The bounding interfaces are free to move
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and surface tension acts with coefficient γ . The effect of gravity is neglected throughout –
we assume that the thickness of the film is sufficiently small so that surface-tension forces
dominate.

We begin by stating the mathematical model. We use the so-called leaky dielectric model
(see for example [22]) which allows for charge distribution on interfaces due to current fluxes
from the bulk. The hydrodynamics are governed by the Navier–Stokes equations and the elec-
tric field in regions 1 and 2 is determined by solving Laplace equations for the correspond-
ing voltage potentials (this is valid since we do not have sources of charge in the bulk – any
charge which is present will move to the interface in a time-scale which is fast compared to
the hydrodynamics). In addition to these field equations, we have a set of nonlinear boundary
conditions at the moving interfaces as documented below.

Denoting the velocity field and pressure in region 1 by u and p (without loss of generality
we take the constant pressure in the surrounding medium to be zero), and the voltage poten-
tials by V (i), i=1,2, the field equations in dimensional form are:
Fluid dynamics

ρ (ut +u ·∇u)=−∇p+µ∇2u, (1)

∇ ·u =0. (2)

Voltage potentials

∇2V (i)=0. (3)

The boundary conditions at the interface y=H(x, t) are a kinematic condition, continuity of
normal and tangential stresses there, continuity of the tangential component of the electric
field and either continuity of the current flux, if the fluids are conducting (equivalently con-
servation of surface charge), or continuity of the normal component of the displacement field
(εE) for non-conducting fluids. The electric-field conditions are modified further if one of the
fluids is conducting and the other is a dielectric (i.e., an insulator), because charge now builds
up at the interface and must be tracked as part of the solution.

To discuss the boundary conditions at the interface we use the stress tensor T = Tf + Te

composed of a fluid part Tf and an electrical part Te. In tensor notation the stresses are given
by,

T f
ij =−pδij +µ

(
∂ui

∂xj
+ ∂uj

∂xi

)
T e
ij = ε

(
EiEj − 1

2
|E|2δij

)
, (4)

where it is understood that subscripts 1 and 2 are to be used for all variables in (4) as appro-
priate. We give the general boundary conditions at the interface X = xex +H(x, t)ey , where
we assume that there exists a surface charge density q(x, t). Different physical limits are dis-
cussed later. The following formulation is similar to that in the reviews [21,22,27] (see also
[28, Chapters 1–3] for a general discussion of electrostatics):

n ·Xt =n ·u; [n · (Tf +Te) ·n]12 =γ∇ ·n; (5, 6)

[t ·Tf ·n]12 =qE · t; [n ×E]12 =0; [n · (εE)]12 =−q; (7, 8, 9)

qt −Xt ·∇sq+∇s · (qus)+qκu ·n =n · [σE]12, (10)

where [·]12 denotes the jump in the variable as the interface is crossed from region 1 to region
2, subscripts s denote surface quantities and κ is the curvature. The electric field is expressed
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by E(1,2) = −∇V (1,2). The vectors n = (−Hx,1)/(1 +H 2
x )

1/2 and t = (1,Hx)/(1 +H 2
x )

1/2 are
the outward-pointing unit normal and tangent to the interface, respectively. Equations (5–7)
are the kinematic condition, and normal and tangential-stress balances, respectively. Boundary
condition (8) states that the tangential electric field is continuous, condition (9) is Gauss’s law
relating the electric field to the charge and condition (10) is a statement of surface-charge con-
servation balancing convection and redistribution of charge due to interface stretching (the
terms on the left) with the flux onto the interface due to current contributions from the bulk
(usually, currents in the bulk are given by J =σE + qu – the latter contribution is a second-
order effect, however, and can be dropped consistently; this term is also absent if the charge
relaxation time is much smaller than the fluid dynamical time-scale, since all charges reside
on the interface, then – see later). Equation (10) is written out in full component form below
(see Equation (23)) following the derivation of a related surfactant equation by Papageorgiou
[29, pp. 41–88]. Note also that the tangential stress balance contains contributions from the
electric field and the viscous stresses are needed to balance these. In the case of perfect con-
ductors or perfect dielectrics, the electrical contributions to (7) vanish because E · t is zero for
perfect conductors, and q=0 for perfect dielectrics. Finally, we note an equivalent form of the
tangential stress balance equation that clarifies the emergence of (7) and is more appropriate
in some limiting forms considered below. The tangential stress balance is [t · (Tf +Te) ·n]12 =0,
and the electric part can be manipulated to yield

[t ·Tf ·n + (εE ·n)(E · t)]12 =0, (11)

which on use of the continuity of the tangential component of the electric field (8) and
Gauss’s law (9), immediately yields (7). The form (11) is useful in analyzing situations where
the charge relaxation time is asymptotically small, as we describe later.

The non-dimensionalize variables are as follows (dimensionless quantities are primed but
the primes are dropped from the final equations):

(x, y)= (dx′,dy′), H(x, t)=dH ′(x′, y′), t= dµ
γ
t ′,

V (1,2)=V0V
(1,2)′, u = γ

µ
u′, p= γ

d
p′, q= ε0V0

d
q ′ (12)

where V0 is a typical voltage drop driving the base electric field.
Using the relationship E(1,2)=−∇V (1,2) and the scales above, leads to the following dimen-

sionless problem (written in full component form) and boundary conditions:
Field equations

Re
[
ut +uux +vuy

]=−px +uxx +uyy, (13)

Re
[
vt +uvx +vvy

]=−py +vxx +vyy, (14)

ux +vy =0, (15)

∇2V (j)=0, j =1,2. (16)

As noted earlier we seek solutions which are symmetric about y=0 and this implies

uy(x,0, t)=v(x,0, t)=V (1)y (x,0, t)=0. (17)

The boundary conditions at the free interface y=H(x, t) are:
Kinematic

v=Ht +uHx. (18)
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Tangential stress balance

2Hx(vy −ux)+
(

1−H 2
x

)
(uy +vx)=−Ebq

(
V (1)x +HxV (1)y

)
. (19)

Normal stress balance

−p+ 2(
1+H 2

x

) [
ux

(
H 2
x −1

)
−Hx(uy +vx)

]

+ Eb

(1+H 2
x )

[(
1−H 2

x

)[
ε

2ε0

(
V 2
y −V 2

x

)]1

2
−2Hx

[
ε

ε0
VxVy

]1

2

]
= Hxx(

1+H 2
x

)3/2
, (20)

where it is understood that quantities in square brackets are evaluated with the variables
corresponding to the appropriate region.
Continuity of tangential electric field

HxV
(1)
y +V (1)x =HxV (2)y +V (2)x ; (21)

Gauss’s law

εp

(
HxV

(1)
x −V (1)y

)
−

(
HxV

(2)
x −V (2)y

)
=−q

√
1+H 2

x ; (22)

Conservation of interfacial charge

qt − HtHx(
1+H 2

x

)qx + 1√
1+H 2

x


 (u+vHx)q√

1+H 2
x



x

+ q(v−uHx)Hxx(
1+H 2

x

)2

=− T(
1+H 2

x

)1/2

[
V (1)y −HxV (1)x −σR

(
V (2)y −HxV (2)x

)]
. (23)

The dimensionless parameters that appear in the model are a Reynolds number Re (propor-
tional to the Ohnesorge number), an electric Weber number Eb measuring the ratio of electric
to capillary pressures, the ratio of fluid to electric time-scales T and σR, εp introduced earlier.
These are given by

Re= ργ d

µ2
, Eb= ε0V

2
0

γ d
, T = τF

τE
= (µd/γ )

(ε0/σ0)
, σR = σout

σin
, εp= εin

εout
. (24)

We note that this choice of scales is the same as that used by Burcham and Saville [26].
It is also useful to consider typical sizes of the dimensionless parameters found in available
experiments. In the microgravity liquid bridge experiments of Burcham and Saville [25], phys-
ical properties of different fluids used are given in their Table 1. By analogy, if we consider
a liquid-film of thickess 5 mm, then that data can be used to estimate typical values of the
Reynolds number Re; for example, silicone oil 12 M at 25 ◦C has Re≈ 0·01 while silicone oil
1 M has Re ≈ 0·1. Higher values can be achieved for different fluids but in all cases Re is
small or order one (the linear theory of [26] is carried out at zero Re). For completeness, how-
ever, we consider the stability problem at arbitrary values of Re as large as 500. Of interest
also are the values of the ratio of time-scales T , defined above. For the experiments just men-
tioned, the values of T are approximately 10 and 24 respectively, justifying the assumption of
fast charge relaxation times adopted later – see also Burcham and Saville [25,26].

Specification of initial and boundary conditions provides a nonlinear moving-boundary
problem which must, in general, be addressed numerically. As far as we know this nonlinear
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problem has not been studied and we proceed with a linear stability analysis in order to iden-
tify the types of instabilities that are possible as well as to obtain information regarding the
well-posedness of the system. We note that in general Re =O(1) in which case the underly-
ing numerical problem cannot be addressed using boundary-integral methods which have been
successful for moving-interface problems (see Pozrikidis [30]). The Stokes-flow limit is a spe-
cial case and follows readily from our non-dimensionalization by considering asymptotically
Re→0 in Equations (13–14).

2.1. Fast charge relaxation times

Typically the parameter T which measures the ratio of fluid to charge relaxation time-scales,
is large and we consider the limiting form of the equations for T �1. Similar assumptions
are made in the studies of Burcham and Saville [26] and Pelekasis et al. [31]. It can be seen
from (23) that for large T we obtain

[σE ·n]12 =0, (25)

which physically implies that the current normal to the interface is continuous. In addition,
the charge q on the interface can be determined from the identity (9) once the problem has
been solved. The appropriate tangential stress condition is now (11) which is given in its full
form below:

2Hx(vy −ux)+
(

1−H 2
x

)
(uy +vx)=Eb

(
V (1)x +HxV (1)y

) [
εp

(
HxV

(1)
x −V (1)y

)
−

(
HxV

(2)
x −V (2)y

) ]
. (26)

The large T limit consists of the field equations (13–16) and the boundary conditions (17–18),
(20) and (25–26). Note that the charge at the interface can be determined afterwards from
(22).

In the remainder of the article we consider the stability characteristics of the problem in
the limit of small charge relaxation times. As noted earlier, the qu contribution in the expres-
sion for the current in the bulk, is negligible in this limit since charges move onto the interface
with a very fast time-scale leaving zero charge behind, to leading order.

3. Linear stability

The flat film is an equilibrium state of the equations and boundary conditions. More specifi-
cally, this base state is (we use bars to denote it)

H̄ =1, ū =0, ∇V̄ (1)=∇V̄ (2)=−ex, p̄= 1
2
Eb(1− εp), q̄=0. (27)

We add perturbations, decorated with a tilde, and linearize the field equations and boundary
conditions to obtain the following problem:

Reũt =−p̃x +∇2ũ, Reṽt =−p̃y +∇2ṽ, (28, 29)

ũx + ṽy =0, ∇2Ṽ (1)=∇2Ṽ (2)=0. (30, 31)

The symmetry boundary conditions at y = 0 are identical to (17) but for tilde variables,
and the boundary conditions at y=1 become:

ṽ= H̃t , ũy + ṽx =Eb
[
(εp−1)H̃x + εpṼ (1)y −V (2)y

]
, (32, 33)
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−p̃−2ũx −Eb
(
Ṽ (2)x − εpṼ (1)x

)
= H̃xx; (34)

Ṽ (1)x = Ṽ (2)x , H̃x + Ṽ (1)y −σR
(
H̃x + Ṽ (2)y

)
=0. (35, 36)

The distrurbance charge follows from the linearized version of Gauss’s law (22),

q̃= (εp−1)H̃x − Ṽ (2)y + εpṼ (1)y . (37)

Normal mode solutions are sought in the form

f̃ (x, y, t)= f̂ (y) exp(ikx+ωt)+ c.c., (38)

where c.c. denotes complex conjugate, f̃ denotes any of the dependent variables, the wave-
number k is real and stability or instability is determined by the sign of the real part of the
eigenvalue ω. The solutions to Equations (28–30) are obtained by elimination of p̂ and û in
favor of v̂ to give

v̂(y)=α1 sinh(ky)+α2 sinh(βy), (39)

where

β2 =k2 +ωRe, (40)

and αi with i an integer will denote constants. The voltage perturbations are

V̂ (1)(y)=α3 cosh(ky), V̂ (2)(y)=α4 exp(−|k|y). (41)

We note that the symmetry conditions have been used in deriving (39) and (41), and the
remaining boundary conditions provide five linear homogeneous equations for the unknowns
x= (α1, α2, α3, α4, Ĥ )

t . It is useful to eliminate α4 in favor of α3 using condition (35), and in
turn to eliminate α3 in terms of Ĥ using the linearized current continuity relation (36). This
reduces the problem to three homogeneous equations for the three unknowns α1, α2, Ĥ . In
matrix form this is

Ax =0, (42)

with the matrix A given by

A=

 sinh k sinhβ −ω

2k2 sinh k (β2 +k2) sinhβ −
1

(β2 +k2) cosh k 2kβ coshβ k3 +
2


 (43)

where 
1 and 
2 are given by


1 = k2ekEb(εpσR −1)
η

, 
2 = k2 cosh(k)
η

(σR −1)(1− εp)Eb. (44)

For non-trivial solutions of (42) we have det(A)=0 leading to the following dispersion relation:

(2k2 +ωRe) coth(k)
[
ω2Re+2k2ω−
1

]
+2kβ cothβ

[

1 −2k2ω

]
+ωRe

[
k3 +
2

]
=0. (45)
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The quantity η is

η= sinh k+σR cosh k. (46)

The root-finding problem (45) is slightly complicated due to the implicit appearance of ω in
the dispersion relation through β. We used Mathematica to calculate branches of the disper-
sion relation and confirmed that for Eb=0 we reproduce the results in [18]; the flow is stable
for all wavenumbers then. Unless otherwise noted, ω remains real (to within machine preci-
sion and truncation error) and growth or decay are identified by ω>0 or ω<0, respectively.

Before presenting general stability charecteristics, it is useful to consider the asymptotic
limits of long and short waves characterized by k� 1 and k� 1, respectively. The behavior
as k→0 for fixed Re, Eb, εp and σR, follows readily from (45) and is found to have the form
ω=kω1 +k2ω2 +· · · , where

ω2
1 = Eb(εpσR −1)

σRRe
⇒ ω=±

[
Eb(εpσR −1)

σRRe

]1/2

k+· · · , (47)

showing that real roots and consequently instability, is possible if

εpσR >1. (48)

It has been found from extensive calculations that the condition (48) is sufficient but not nec-
essary for instability (it is clearly necessary for long wave instability). When εpσR < 1 long
waves are neutrally stable and have non-zero frequencies equal to

√
Eb|εpσR|/(σRRe). It is

possible, however, to obtain instability at higher wavenumbers if the parameters satisfy cer-
tain constraints. As we show later when we analyze the zero Reynolds number limit in detail,
instability at k=O(1) can be found even when (48) is not satisfied as long as the additional
condition

(σR −1)(1− εp)<0, (49)

is simultaneously satisfied. This behavior carries over to non-zero Re and we illustrate such a
case below. The second condition (49) is in agreement with that of Melcher and Schwarz [20],
who also point out that its origin is due to the polarization force at the interface due to the
difference in permittivities. Note, however, that condition (49) requires pairs of fluids with the
property that the fluid of higher conductivity has a lower permittivity or vice versa, which is
hard to achieve in practice (see [20]). If (48) is satisfied, a damped root also emanates from
the origin and has negative growth rate for all k. If the criterion (48) is not satisfied, then it
has been confirmed numerically that there are no growing modes for wide ranges of parame-
ters.

For large k, the roots take the form ω= k2ω2 + kω1 +ω0 +· · · , from which it follows that
the leading-order contribution from (45) gives the following polynomial for ω2:

(2+ω2Re)
4 =16(1+ω2Re). (50)

One root is ω2 = 0 and using elementary methods it is easy to establish that there exists
another real root of (50) in the interval −1/Re <ω2<0, which provides short wave damping
proportional to −k2; the root is approximately given by

ω≈−0·9126
Re

k2, k�1. (51)
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Figure 1. (a) Unstable modes for Re = 1, εp = 4, σR = 0·5; Eb varies from 160 to 1. (b) Unstable modes for lower
Eb =0·05, 0·005, 0·0005.

Guided by the calculations presented later, it is relevant to consider the situation ω2 =0 and
to calculate ω1 and at the next order ω0 from the dispersion relation. The result is

ω≈−1
2
k+

[
−3Re

16
− (σR −1)(1− εp)Eb

2(1+σR)
]
, k�1. (52)

Short waves are damped, therefore, as would be expected. The quadratic behavior given by
(51) is associated with the short wave limit of the damped root emanating from the origin,
while the linear behavior (52) corresponds to the short wave limit of the growing root – see
below.

Representative numerical results when (48) is satisfied, are presented in Figures 1–6. There
are four dimensionless parameters in the problem, the Reynolds number Re, the permittivity
and conductivity ratios εp and σR, and the electric field parameter (electric Weber number),
Eb. Figure 1 fixes the values Re = 1, εp = 4 and σR = 0·5 and presents the stability charac-
teristics as Eb varies. It can be seen that for the given choice of parameters the instability
decreases with decreasing Eb and in fact disappears completely in the absence of an electric
field since viscous damping is the only effect then. Another notable feature of Figure 1 is that
both the maximum growth rate and the size of the band of unstable waves decrease to zero
in the limit Eb→0. The precise rate at which this happens is critical in constructing a weakly
nonlinear theory for small Eb and our results can be used to identify these scalings. Consid-
ering the results in Figure 1, the maximum growth rates when Eb = 0·05, 0·005, 0·0005, are
approximately equal to 0·013, 0·0015, 0·00016, while the corresponding critical wavenumbers,
kc say (i.e., the wavenumber above which the flow is stable), are approximately 0·24, 0·09, 0·03,
respectively. Noting that Eb is decreased by a factor of 10 in each instance, we obtain evi-
dence of the scalings

ωmax ∼Eb, kc ∼
√
Eb as Eb→0. (53)

These have been confirmed asymptotically also starting with (45) and lead to the scalings
required to construct a weakly nonlinear theory. We do not pursue the nonlinear analysis here
but leave it for future work coupled with strongly nonlinear calculations.

We present next a more detailed picture of the modes for the case Eb=1, the other param-
eters being those of Figure 1. As indicated by the asymptotic results (47–52), there is one
stable and one unstable root in the vicinity of k= 0. A comparison between the asymptotic
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Parameter values are: Eb=1, Re=1, εp=4 and σR=0·5.
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results (47) and the calculated growth rates are given in Figure 2. The linear behavior pre-
dicted by the asymptotic formulas (dashed lines) are in excellent agreement with the calculated
modes (solid curves). The unstable mode becomes stable at large enough wavenumbers and
we consider the large k asymptotic behavior of both modes in Figure 3, where again asymp-
totic predictions are indicated with dashed curves. It is clear from the results that the unsta-
ble mode decays linearly with k while the decay of the stable mode has a faster quadratic
decay rate with k. The corresponding asymptotic predictions (51) and (52) are superimposed
and agreement is again very good. (Note that the excellent agreement for the stable mode was
verified for values of k as large as 30, but the results are not depicted due to the scale of the
relatively rapid decay.)

We consider next the effect of the ratio of conductivities on the stability of the layer.
The other parameters are fixed at Re = 1, Eb = 10 and εp = 4, and results are presented in
Figure 4 as σR, the ratio of the outer to the inner conductivity, is reduced. Figure 4a presents
results for σR > 1 and Figure 4b corresponds to σR < 1. In both cases, we observe a reduc-
tion of the instability as σR decreases, with a decrease in both maximum growth rate (ωmax)
and critical wavenumber (kc) being evident. In fact, the instability disappears completely for
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σR <σRc=1/4 (this is criterion (48)), with both ωmax and kc tending to zero as σR →σRc+.
The rates at which ωmax and kc tend to zero as a function of the small parameter (σR−σRc)
are useful in the construction of the appropriate scalings that lead to a weakly nonlinear
theory, in much the same way as was discussed above for the limit Eb → 0. In the table
below we present numerical evidence of such scalings from calculations near the stability limit
σRc=0·25.

Table 1.

σR σR −0·25 ωmax kc ωmax ratio kc ratio

0·3 0·05 0·086 0·104 – –
0·255 0·005 0·003 0·009 28·7 11·5
0·2505 0·0005 9·6×10−5 9×10−4 31·5 10
0·25005 0·00005 3·05×10−6 9×10−5 31·5 10

The table contains values of ωmax and kc as the value of σR − (1/4) is successively
decreased by a factor of 10 starting at 0·3 and ending at 0·25005. The last two columns in
the table show the corresponding decrease of ωmax and kc; noting that 103/2 ≈31·6, it can be
concluded that ωmax behaves like (σR −σc)3/2, and kc decreases by a factor of 10 each time
and therefore behaves like (σR − σc). Guided by the calculations, this asymptotic result can
be established by considering the behavior of (45) in the double limit ω→ 0, k→ 0 where a
main balance is found with contributions from the first two terms. In conclusion, then, we
have the following asymptotic behavior which can be used to construct the nonlinear evolu-
tion of the flow in the neighborhood of the bifurcation point σRc (the fact that σRc=1/4 in
this numerical example is irrelevant; the behavior is generic) by introducing long spatial and
time-scales X and τ , say, according to:

X= (σR −σRc)x, τ = (σR −σRc)3/2t. (54)

We do not pursue the nonlinear analysis here but note that it is interesting to compare the
weakly nonlinear behavior near the distinct bifurcation points Eb=0 and σR=σRc, as well as
the case when they occur simultaneously.

The effect of variations in the permittivity ratio εp is summarized in Figure 5, the other
parameters fixed at Re = 1, Eb = 10, σR = 0 ·5. As shown asymptotically earlier, a neces-
sary condition for long-wave instability is εpσR > 1; this suggests that for the parameters of
Figure 5, we obtain stability (and in fact to all wavenumbers) for εp <2. These observations
are in complete agreement with the modes shown in the figure, and again there is a shrinking
of the unstable branch as the critical value of εp is approached from above. One can again
pursue a weakly nonlinear analysis in the neighborhood of the bifurcation point but this is
similar to that outlined above pertaining to variations in conductivity and is omitted.

The effect of Reynolds number is considered next. Figure 6 shows stability results as the
Reynolds number increases from 10 to 500. The maximum growth rate decreases with Re and
it has been established that the behavior scales with R−1/2

e for large Re. At the same time, the
band of unstable waves is retained and does not shift to asymptotically long waves. Physically
we do not expect such large Reynolds numbers for this class of problems (see [25,26]) and
Figure 6 is included for completeness. Of more relevance, however, is the zero Re limit and
this is taken up next.
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Figure 7. (a) Modes for Re=0·1, εp =0·5, σR =0·5, Eb=100. Instability is seen over a finite band of wavenumbers
and long waves are neutrally stable. The dashed line is the asymptotic result (52). (b) Details of the stable mode
structure. The left branch decays fast and the dashed line represents the asymptotic result (51). Same parameters
as in (a).

Finally, we consider situations that are characterized by εpσR < 1. It has already been
shown that the flow is stable for long waves with the leading-order behavior being a travel-
ing wave with speed that increases as the electric Weber number Eb increases (see (47)). In
our numerical search for growing modes we could not obtain instability unless the additional
condition (49) is satisfiled (we show this analytically for the Stokes-flow problem). In order
to complete the picture of the different modes, we present results for εp = σR = 0·5 so that
εpσR <1 but (σR−1)(1−εp)<0, and a non-zero Reynolds number Re=0·1 (other values give
qualitatively similar results). The results are shown in Figure 7. Figure 7a details the unstable
part of the mode and it is seen that instability is possible for a band of wavenumbers away
from k=0. Figure 7b shows the behavior as we move into the lower half plane. All values of
ω presented in the figure are real and in the gap to the left of the mode ω is purely imaginary
– no roots with a non-zero real part were found there. The figures contain the large k asymp-
totic results also, and agreement is seen to be very good. The right branch decays according
to the linear rate (52) while the left branch has a quadratic decay rate as given by (51). These
trends are similar to the decay of the modes for cases having εpσR >1 – see Figure 3. In fact,
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by comparison with Figure 2, we can conclude that when εpσR decreases below 1 and long
waves become neutrally stable, the stable and unstable modes emanating from the origin in
Figure 2 merge and move to the right to give the structures shown in Figure 7. It is interest-
ing to note that for a given set of parameters it is possible to have waves which neither grow
nor decay but simply translate with a constant speed. For the values of Figure 7, any wave
with k<1·16, i.e., longer than 2π/1·16, is neutrally stable and nonlinear traveling waves may
be possible in such regimes.

4. Zero-Reynolds-number limit

It can be seen from the definition of β, Equation (40), that the solutions for the perturbation
velocity (39), become linearly dependent if Re=0; the streamfunction for this two-dimensional
Stokes problem satisfies ∇4ψ=0 and the symmetry conditions yield the linearly independent
solutions sinh ky and y cosh ky. It is easy to check from (39) that these are the solutions
obtained to order Re as Re → 0. As expected, therefore, this limit can be applied directly to
the dispersion relation (45). Writing ω=ω0 +Reω1 +· · · , we find that the leading-order term
in (45) is O

(
R0
e

)
and vanishes identically, while at order Re we obtain the following explicit

expression for ω0:

ω0 = Eb(εpσR −1)k3ek −ηk3 sinh2 k−Eb(σR −1)(1− εp)k2 sinh2 k cosh k

2k2η(sinh k cosh k+k) . (55)

It follows directly from (55), that

lim
k→0

ω0(k)=
Eb(εpσR −1)

4σR
, (56)

while the short wave limit becomes

ω0 ∼−1
2
k+ . . . , as k→∞, (57)

showing that short waves are damped as expected. It is clear from (56) that a necessary con-
dition for long wave instability is εpσR > 1 as was concluded earlier. A comparison between
calculated stability characteristics and the asymptotic result (56) is given in Figure 8 for suc-
cessively decreasing Reynolds numbers. It is seen that agreement is very good and notably
the shift of the most unstable wavenumber to zero. We note in passing that a lack of a long
wavenumber cut-off is observed in the related problem of capillary instability of a highly vis-
cous liquid jet (see the classical reference [32] and the recent and detailed study of Timmer-
mans and Lister [33]). A long wave cut-off can be obtained in a consistent way starting from
the asymptotic scheme introduced above and noting that the result (56) is valid as long as
k2 �Re – this can be seen from the approximation of β for small Re. In the neighborhood
of k= 0, then, an inner region must be introduced with k∼R1/2

e in order to account for the
non-uniformity in the expansion. We refer the reader to the analogous liquid thread problem
analyzed in detail in [33].

4.1. Neutral stability characteristics

Neutral stability for Re = 0 is achieved by setting ω0 = 0 in (55). The explicit form of (55)
shows that the principle of exchange of stabilities holds in this case, that is the growth rate
is real at the neutral point – the right hand side of (55) is a real valued function for k real.
The problem, then, is to find the real roots (without loss of generality it is enough to look
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for k>0) of the transcendental equation

Eb(εpσR −1)kek = sinh2 k cosh k
[
k(tanhσR)+Eb(σR −1)(1− εp)

]
. (58)

The asymptotic results (56) and (57) suggest that the cases (εpσR −1)>0 and (εpσR −1)<0
are different. In the former case, we expect a real positive root of (58) which measures the
size of the instability band, and in the latter we will either have no roots (in which case the
flow is stable for all k), or two distinct roots giving a band of unstable waves with a long
wavenumber cut-off – as a physical parameter reaches a critical value, these two roots merge
to give a monochromatic neutral wave. In what follows we quantify these observations and in
particular we concentrate on varying Eb while keeping εp and σR fixed.

4.1.1. The case (εpσR −1)>0
The left-hand side (LHS) of (58) is positive and the right-hand side (RHS) is either positive
or negative (for small k at least) depending on whether (σR − 1)(1 − εp) is positive or nega-
tive, respectively. The former case is straight forward since the RHS is positive for all k, is
much smaller than the LHS at small k, but much larger at large k, hence a root is guaran-
teed. If (σR − 1)(1 − εp) < 0, the RHS is negative for small k but again grows much faster
than the LHS at large k, and again a positive root is obtained. The roots were found using
Mathematica for two representative cases, (i) εp=4, σR=0·5, and, (ii) εp=4, σR=2, and the
neutral wavenumbers are plotted as a function of Eb in Figure 9. In both cases, we observe
the

√
Eb dependence near the origin that was shown earlier for order one Re – see (53). The

large Eb-dependence follows from (58) by noting that for case (i) the balance is between the
LHS and the first term on the RHS, yielding kc ∼1/2 log(Eb), while for case (ii) the balance
is between the two terms on the RHS giving kc ∼Eb(σR−1)(εp−1)/(1+σR). For the param-
eter values of Figure 9, the large Eb behavior is predicted to be kc ∼Eb and is in excellent
agreement with the results.

4.1.2. The case (εpσR −1)<0
In this case, the criterion (48) is violated and as a consequence there are no unstable long
waves; instability can only occur at finite k. If in addition we have (σR −1)(1− εp)>0, then
inspection of (58) shows that no real roots are possible for any Eb since the LHS is negative
and the RHS is positive. A necessary condition for instability is therefore (σR−1)(1−εp)<0,
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and the details depend on the values of the parameters. In particular, fixing εp and σR, we
consider the effect of Eb. As mentioned above, we expect two neutral stability branches which
will merge at a critical value of Eb. Such a situation has been calculated in Figure 10 for the
values εp=0·5, σR =0·5. The solid curve represents the lower branch denoted by kcminus and
the dashed curve the upper branch denoted by kcplus. We can see that the two branches merge
at the point (Ebc, kc) indicated on the figure. The particular values in this example are approx-
imately equal to (21·81,3·035). We note that in the vicinity of the nose, a classical weakly
nonlinear stability analysis is possible centered around the monochromatic neutral mode kc.

5. Conclusions

We have formulated the nonlinear interfacial electrohydrodynamic problem of a viscous con-
ducting liquid film of constant permittivity and conductivity, when a constant electric field is
acting parallel to the film. The linear stability is studied and a dispersion relation is derived
when the surrounding medium is hydrodynamically passive but conducting. The dispersion
relation is valid in the limit when the charge relaxation time-scale is much smaller than the
hydrodynamic time-scale, something that is usually found in practice and which has motivated
several related studies (see [25,26,31]). We have studied the stability characteristics as each of
the controling parameters is varied. The case of zero-Reynolds-number is considered in detail
since it is more relevant in experiments (see [25] and the examples given in Section 2). In addi-
tion, asymptotic limits of long and short waves have been analyzed and used to confirm the
calculations.

With inertia present, it is found that a general criterion for instability is the inequality
εpσR−1>0, and this becomes a necessary condition for instability to long waves. The effect
of the electric field is felt through the electric Weber number Eb, and the maximum growth
rate ωmax along with the critical wavenumber kc, decrease as Eb decreases to zero. We find
that ωmax ∼Eb and kc ∼√

Eb as Eb → 0 (Equation (53)) and these establish the scales to be
used in studying the nonlinear response of the system near the bifurcation point Eb = 0. It
is also established that when the conductivity of the surrounding medium increases relative
to that of the fluid region, both ωmax and kc increase proportionally to σR (see Figure 4). A
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decrease of σR causes ωmax and kc to decrease to zero at the rates (σR − σRc)3/2 and (σR −
σRc), respectively, in the neighborhood of σRc=1/εp. As noted above for the variations in Eb,
these rates in turn provide the appropriate asymptotic scalings that can be utilized in a study
of the dynamics in the neighborhood of the bifurcation point σR =σRc – see Equation (54).
The effect of the ratio of permittivities εp on the instability is similar to that for σR; that is,
both ωmax and kc shrink to zero as εp→εpc=1/σR, while there is a proportional increase of
both as εp increases (see Figure 5). This implies that the electric field enhances the instabil-
ity of fluids which have higher permittivities, all other physical parameters held fixed. Varia-
tions in Reynolds number have also been calculated and as shown in Figure 6 the growth rate
decreases with increasing Re but the band of unstable waves remains finite.

The case Re = 0 has been considered in detail. As indicated in the physical examples
given in Section 2, typical values of Re in related liquid bridge experiments are small with
values of 0 ·1 at most (see [25]). This limit yields an explicit expression for the growth
rate (see (55)), and consequently an expression for neutral wavenumbers (see (58)). The lim-
iting form (55) is compared with the calculations (see Figure 8) and agreement is excel-
lent; in fact the asymptotic result is valid as long as k � R

1/2
e and a long wavenumber

cut-off is achieved in a region k ∼ R
1/2
e as Re → 0, as indicated by the finite Re numeri-

cal results (see also [33] for the related capillary thread problem). Neutral stability curves
of kc vs. Eb have been calculated and typical results are presented in Figures 9 and 10.
The basic stability criteria can be summarized very simply as follows:

• εpσR−1>0 is a sufficient but not necessary condition for instability. If this holds, the flow
is unstable for all non-zero values of Eb. In addition, if the quantity (σR − 1)(1 − εp) is
positive/negative the band of unstable waves is smaller/larger respectively, for a given value
of Eb (see Figure 9).

• εpσR−1<0 can give instability only if in addition we have the criterion (σR−1)(1−εp)<
0. In such cases the flow is stable to all wavenumbers below a critical value Ebc and
becomes unstable to a finite but growing band of wavenumbers as Eb increases above Ebc
(see Figure 10).

These conclusions based on the results for Stokes flow broadly hold for non-zero Re also.
The main difference is that when εpσR − 1< 0 and (σR − 1)(1 − εp) < 0, neutral stability is
obtained at values of Eb <Ebc where Ebc is analogous to that in Figure 10 – it can be seen
from Figure 7 that the two corresponding neutral points when Re �=0 vary in a similar way to
the Stokes case, and as Eb is decreased a critical value Ebc is reached below which the insta-
bility disappears. Our numerical evidence suggests that for non-zero Re the imaginary part of
ω is also zero at this point and hence the principle of exchange of stabilities holds (we do
not have a proof of this). Away from this point, ω is purely imaginary and asymptotes to the
small k result (47) as k is reduced to zero.

In terms of dimensional quantities, the results above show that instability will be present
at any electric field strength as long as εin/εout>σin/σout. If however εin/εout<σin/σout, then
instability is possible only if (σout − σin)(εout − εin) < 0. As mentioned earlier, this condition
has been pointed out in [20] and has its origin in the polarization forces at the interface due
to the permittivity contrast. We also note that this condition requires the more conducting
fluid to have the lower permittivity, or the less conducting fluid to have the higher permit-
tivity. This is usually difficult to achieve in practice – for example in the experiments of [25]
the conductivities and permittivities of the pair of fluids of castor oil/eugenol and silicone oil
12 M are 2·42×10−9 Sm−1, 5·24εf s and 1·98×10−12 Sm−1 and 2·74εfs, where εfs is the per-
mittivity of free space.
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The detailed linear stability results presented here can be used to guide nonlinear studies
in three directions. First, the weakly nonlinear stability analysis in the vicinity of the bifur-
cation points Eb = 0, σR = σRc and εp = εpc, as well as the corresponding analysis near the
nose Eb =Ebc when criterion (48) is violated. Second, a strongly nonlinear long wave the-
ory as was successfully implemented in [9,11,18], and, third a full computational study to
construct nonlinear traveling waves, for example, as well as the time evolution and possible
rupture of the layer in the zero Re limit where accurate boundary-integral methods can be
used (see the analogous inviscid studies of [9,10]).These studies are the subject of current and
future research.
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